
CS	61C:	
Great	Ideas	in	Computer	Architecture

Lecture	3:	Pointers

Krste	Asanović &	Randy	Katz

http://inst.eecs.berkeley.edu/~cs61c

Agenda
• Pointers	in	C
• Arrays	in	C
• This	is	not	on	the	test
• Pointer	arithmetic
• Strings,	main
• And	in	Conclusion,	…

CS	61c Lecture	3:	Pointers 2

Processor

Control

Datapath

Components	of	a	Computer

3

PC

Registers
Arithmetic	&	Logic	Unit

(ALU)

Memory Input

Output

Bytes

Enable?
Read/Write

Address

Write	
Data

Read
Data

Processor-Memory	Interface I/O-Memory	Interfaces

Program

Data

CS	61c Lecture	3:	Pointers

Computer	Memory

CS	61c Lecture	3:	Pointers 4

int a;

a = -85;

printf(“%d”, a);

Do	not	confuse	memory	address	and	value.
Nor	a	street	address	with	the	person	living	there.

Type Name Addr Value
…
108
107
106
105
104
103
102
101
100
…

Pointers
• C	speak	for	“memory	addresses”
• Notation
int *x; //	variable	x	is	an	address	to	an	int
int y	=	9; //	y	is	an	int
x	=	&y; //	assign	address	of	y	to	x

//	“address	operator”
int z	=	*x; //	assign	what	x	is	pointing	to	to	z

//	“dereference	operator”
*x	=	-7; //	assign	-7	to	what	x	is	pointing	to

What	are	the	values	of	x,	y,	z?

CS	61c Lecture	3:	Pointers 5

Type Name Addr Value
…
108
107
106
105
104
103
102
101
100
…

Pointer	Type
• Pointers	have	types,	like	other	variables

− “type	of	object”	the	pointer	is	“pointing	to”

• Examples:
− int *pi; // pointer to int
− double *pd;// pointer to double
− char *pc; // pointer to char

CS	61c Lecture	3:	Pointers 6

Generic	Pointer	(void	*)
• Generic	pointer

− Points	to	any	object	(int,	double,	…)
− Does	not	“know”	type	of	object	it	references
(e.g.	compiler	does	not	know)

• Example:
− void *vp; // vp holds an address to

// object of ”arbitrary” type

• Applications
− Generic	functions	e.g.	to	allocate	memory
− malloc, free

§ accept	and	return	pointers	of	any	type
§ see	next	lecture

CS	61c Lecture	3:	Pointers 7

Pointer	to	struct

CS	61c Lecture	3:	Pointers 8

Your	Turn!

Answer a b
RED 3 -7

GREEN 4 5
ORANGE -4 5

-2 5

CS	61c 9

Type Name Addr Value
…
108
107
106
105
104
103
102
101
100
…

What’s	wrong	with	this	Code?

CS	61c Lecture	3:	Pointers 10

Output:
a	=	1853161526,		
p	=	0x7fff5be57c08,		
*p	=	0

Pointers	as	Function	Arguments

• C	passes	arguments	by	value
• i.e.	it	passes	a	copy
• value	does	not	change	outside	function

• To	pass	by	reference use	a	pointer
CS	61c Lecture	3:	Pointers 11

Type Name Addr Value
…
108
107
106
105
104
103
102
101
100
…

Parameter	Passing	in	Java
• “primitive	types”	(int,	char,	double)	

− by	value (i.e.	passes	a	copy)
• Objects

− by	reference (i.e.	passes	a	pointer)
− Java	uses	pointers	internally

§ But	hides	them	from	the	programmer
−Mapping	of	variables	to	addresses	is	not	defined	in	Java	
language
§ No	address	operator	(&)
§ Gives	JVM	flexibility	to	move	stuff	around

CS	61c Lecture	3:	Pointers 12

Your	Turn!

Answer a b c
RED 5 3 1

GREEN 1 5 3
ORANGE 3 3 1

3 5 1
CS	61c

Type Name Addr Value
…
105
104
103
102
101
100
…

Agenda
• Pointers	in	C
• Arrays	in	C
• This	is	not	on	the	test
• Pointer	arithmetic
• Strings,	main
• And	in	Conclusion,	…

CS	61c Lecture	3:	Pointers 14

C	Arrays

CS	61c Lecture	3:	Pointers 15

• Declaration:
− // allocate space
// unknown content
int a[5];

− // allocate & initialize
int b = { 3, 2, 1 };

• Element	access:
− b[1];
− a[2] = 7;

• Index	of	first	element:	0

Type Name Addr Value
…
108
107
106
105
104
103
102
101
100
…

Beware:	no	array	bound	checking!

Output: a[0] = 1

a[1] = 2
a[2] = 3
a[3] = -1870523725

CS	61c Lecture	3:	Pointers 16

Often the result is much worse:
• erratic behavior
• segmentation fault,	etc.
• C	does	not know array length!
• Pass as	argument into functions

Use	Constants,	Not	Literals
• Assign	size	to	constant

− Bad	pattern
int i, ar[10];
for(i = 0; i < 10; i++){ ... }

− Better	pattern
const int ARRAY_SIZE = 10;
int i, a[ARRAY_SIZE];
for(i = 0; i < ARRAY_SIZE; i++){ ... }

• “Single	source	of	truth”
− Avoiding	maintaining	two	copies	of	the	number	10
− And	the	chance	of	changing	only	one
− DRY:	“Don’t	Repeat	Yourself”

CS	61c Lecture	3:	Pointers 17

Pointing	to	Different	Size	Objects
• Modern	machines	are	“byte-addressable”

− Hardware’s	memory	composed	of	8-bit	storage	cells,
each	has	a	unique	address

• Type	declaration	tells	compiler	how	many	bytes	to	fetch	on	each	access	
through	pointer

− E.g.,	32-bit	integer	stored	in	4	consecutive	8-bit	bytes

18

424344454647484950515253545556575859

int *x

32-bit	integer	
stored	in	four	bytes

short *y

16-bit	short	stored	
in	two	bytes

char *z

8-bit	character	
stored	in	one	byte

Byte	address

CS	61c Lecture	3:	Pointers

sizeof()	operator

• sizeof(type)
− Returns	number	of	bytes	in	object
− Number	of	bits	in	a	byte	is	not	standardized

§ All	modern	computers:	8	bits	per	byte
§ Some	“old”	computers	use	other	values,	e.g.		6	bits	per	”byte”

• By	definition,	in	C	
− sizeof(char)==1

• For	all	other	types	result	is	hardware	and	compiler	dependent
− Do	not	assume	- Use	sizeof!

19CS	61c Lecture	3:	Pointers

Output:

double: 8
array: 20
s: 4

Agenda
• Pointers	in	C
• Arrays	in	C
• This	is	not	on	the	test
• Pointer	arithmetic
• Strings,	main
• And	in	Conclusion,	…

CS	61c Lecture	3:	Pointers 20

So	what	did	Dr.	Moore	Predict?
• Transistor*	cost	as	a	function	of	
components	per	chip
− Minimum
− Shifts	to	right:

§ As	time	passes,	cost	decreases	
provided	we	get	more

§ Fortunately	we	always	had	good	
ideas	to	use	more:
o Computers
o Memory
o Smartphones
o Internet	of	Things?

• Why	a	minimum?
− If	too	small,	some	don’t	work!

CS	61c Lecture	3:	Pointers 21
*	Transistors:	basic	elements	making	up	computers	(see	later)

Dr.	Moore’s	Vision	(in	1965)

• Something	useful	that	is	getting	always	better	and	less	expensive	is	good	
for
− Society
− Business

CS	61c Lecture	3:	Pointers 22

Why	do	people	say	Moore’s	Law	is	over?

CS	61c Lecture	3:	Pointers 23

Fabs (where	chips	are	made)	$5-10B

CS	61c Lecture	3:	Pointers 24

Final	Four:
Intel
TSMC
Samsung
Global	Foundries	(was	IBM)

130nm 90nm 65nm 40nm 28nm <=22nm

Break!

9/6/17 25Fall	2017 - Lecture	#3

Agenda
• Pointers	in	C
• Arrays	in	C
• This	is	not	on	the	test
• Pointer	arithmetic
• Strings,	main
• And	in	Conclusion,	…

CS	61c Lecture	3:	Pointers 26

Pointer	Arithmetic	- char

CS	61c 27

Type Name Byte
Addr*

Value

…
108
107
106
105
104
103
102
101
100
…

*pc = b
c = 0x7fff50f54b3e
pc = 0x7fff50f54b3f
pc-c = 1
*Computer	only	uses	byte	addresses.	Tables	with	blue	headers	are	simplifications.

Pointer	Arithmetic	- int

CS	61c Lecture	3:	Pointers 28

Type Name Byte
Addr

Value

…
108
107
106
105
104
103
102
101
100
…

*pi = 20
i = 0x7fff50f54b40
pi = 0x7fff50f54b44
pi-i = 1

Array	Name	/	Pointer	Duality
• Array	variable	is	a	“pointer”	to	the	first	(0th)	element
• Can	use	pointers	to	access	array	elements

− char *pstr and	char astr[] are	nearly	identical	declarations
− Differ	in	subtle	ways:	astr++ is	illegal

• Consequences:
− astr is	an	array	variable,	but	works	like	a	pointer
− astr[0] is	the	same	as	*astr
− astr[2] is	the	same	as	*(astr+2)
− Can	use	pointer	arithmetic	to	access	array	elements

CS	61c Lecture	3:	Pointers 29

Arrays	versus	Pointer	Example

CS	61c Lecture	3:	Pointers 30

Output:	
a[1]=20, *(p+1)=20, p[2]=30
a[0]=11, a[1]=22, a[2]=33

Mixing	pointer	and	array	notation	can	be	confusing	à avoid.

Type Name Addr Value
…
104
103
102
101
100
…

Pointer	Arithmetic
• Example:

int n = 3;
int *p;
p += n; // adds n*sizeof(int) to p
p -= n; // subtracts n*sizeof(int) from p

• Use	only	for	arrays.	Never:
char *p;
char a, b;
p = &a;
p += 1; // may point to b, or not

CS	61c Lecture	3:	Pointers 31

32

Arrays	and	Pointers

• Array	» pointer	to	the	initial	(0th)	array
element

a[i] º *(a+i)

• An	array	is	passed	to	a	function	as	a	pointer
• The	array	size	(#	of	bytes)	is	lost!

• Usually	bad	style	to	interchange	arrays	and
pointers

Really int *array
int
foo(int array[],

unsigned int size)
{

… array[size - 1] …
}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …

}

explicitly
pass size

Passing arrays:

CS	61c Lecture	3:	Pointers

33

Arrays	and	Pointers
int
foo(int array[],

unsigned int size)
{

…
printf(“%d\n”, sizeof(array));

}

int
main(void)
{

int a[10], b[5];
… foo(a, 10)… foo(b, 5) …
printf(“%d\n”, sizeof(a));

}

What	does	this	print?

What	does	this	print?
(provided		sizeof(int)==4)

8

40

...	because	array is	really
a	pointer	(and	a	pointer	is	
architecture-dependent,	but		
likely	to	be	8	on	modern
64-bit	machines!)

CS	61c Lecture	3:	Pointers

34

Arrays	and	Pointers

int i;
int array[5];

for (i = 0; i < 5; i++)
{

array[i] = …;
}

int *p;
int array[5];

for (p = array; p < &array[5]; p++)
{

*p = …;
}

These	code	sequences	have	the	same	effect:

CS	61c Lecture	3:	Pointers

Name Type Addr Value
…
106
105
104
103
102
101
100
…

Point	past	end	of	array?
• Array	size	n;	want	to	access	from	0 to	n-1,	but	test	for	exit	by	
comparing	to	address	one	element	past	the	array

const int SZ = 10;
int ar[SZ], *p, *q, sum = 0;
p = &ar[0]; q = &ar[SZ];
while (p != q){

// sum = sum + *p; p = p + 1;
sum += *p++;

}
• Is	this	legal?
• C	defines	that	one	element	past	end	of	array	must	be	a	valid	address,	
i.e.,	not	cause	an	error

CS	61c Lecture	3:	Pointers 35

Valid	Pointer	Arithmetic
• Add/subtract	an	integer	to/from	a	pointer
• Difference	of	2	pointers	(must	both	point	to	elements	in	same	array)
• Compare	pointers	(<,	<=,	==,	!=,	>,	>=)
• Compare	pointer	to	NULL	
(indicates	that	the	pointer	points	to	nothing)

Everything	makes	no	sense	&	is	illegal:
• adding	two	pointers
• multiplying	pointers	
• subtract	pointer	from	integer

CS	61c Lecture	3:	Pointers 36

Pointers	to	Pointers

CS	61c Lecture	3:	Pointers 37

Your	Turn	…
int x[] = { 2, 4, 6, 8, 10 };

int *p = x;

int **pp = &p;

(*pp)++;

(*(*pp))++;

printf("%d\n", *p);

38

Name Type Addr Value
…
106
105
104
103
102
101
100
…

Answer
RED 2

GREEN 3

ORANGE 4

5

Administrivia
• Homework	0	and	Mini-bio	will	be	released	by	tonight
• Lab	swap	policy	is	posted	on	Piazza	and	the	website
• Guerrilla	Session	and	mini-tutoring	session	details	will	be	
posted	soon

CS	61c Lecture	3:	Pointers 39

Break!

9/6/17 40Fall	2017 - Lecture	#3

Agenda
• Pointers	in	C
• Arrays	in	C
• This	is	not	on	the	test
• Pointer	arithmetic
• Strings,	main
• And	in	Conclusion,	…

CS	61c Lecture	3:	Pointers 41

C	Strings

• C	strings	are	null-
terminated	character	
arrays
−char s[] = ”abc”;

CS	61c Lecture	3:	Pointers 42

Type Name Byte
Addr

Value

…
108
107
106
105
104
103
102
101
100
…

String	Example

CS	61c Lecture	3:	Pointers 43

Output:				str =	abc,		length	=	3

Concise	strlen()
int strlen(char *s) {

char *p = s;
while (*p++)

; /* Null body of while */
return (p – s – 1);

}

What	happens	if	there	is	no	zero	character	at	end	of	string?
44CS	61c Lecture	3:	Pointers

Arguments	in	main()

• To	get	arguments	to	the	main	function,	use:
− int main(int argc, char *argv[])
− argc is	the	number of	strings	on	the	command	line
− argv is	a	pointer	to	an	array	containing	the	arguments	as	strings

45CS	61c Lecture	3:	Pointers

Example

46CS	61c Lecture	3:	Pointers

UNIX: $ gcc -o ex Argc.c
$./ex -g a "d e f”
arg[0] = ./ex
arg[1] = -g
arg[2] = a
arg[3] = d e f

Agenda
• Pointers	in	C
• Arrays	in	C
• This	is	not	on	the	test
• Pointer	arithmetic
• Strings,	main
• And	in	Conclusion,	…

CS	61c Lecture	3:	Pointers 47

And	in	Conclusion,	…
• Pointers	are		“C	speak”	for	machine	memory	addresses
• Pointer	variables	are	held	in	memory,	and	pointer	values	are	just	numbers	
that	can	be	manipulated	by	software

• In	C,	close	relationship	between	array	names	and	pointers
• Pointers	know	the	type	&	size	of	the	object	they	point	to	
(except	void	*)

• Like	most	things,	pointers	can	be	used	for
− Pointers	are	powerful
− But,	without	good	planning,	a	major	source	of	errors
− Plenty	of	examples	in	the	next	lecture!

48CS	61c Lecture	3:	Pointers

